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Abstract. -We consider,-khe stability of difference schemes for the solution of the initial boundary
value problem for the equation,,

ax

s= (A(x, t)u,), + B(x, t)u,, + C(x, t)u + f(x, t),

where u, A, B, C and f are complex valued functions. Using energy methods, we establish the
* stability of a general two level scheme which includes Euler's method, Crank-Nicolson's method

and the backward Euler method. If the coefficient VJIt) is purely imaginary, the explicit Euler's
method is unconditionally unstable, For this case, 4e- propose a new scheme with appropriately
chosen artificial dissipation, which-we provetto be conditionally stable.
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1. Introduction

Finite difference methods for the solution of equations of Schrgdinger type have been studied by

many authors, and extensively applied to solve practical problems in many disciplines [1, 5, 6, 7, 8,

9, 10, 11]. Since conventional explicit schemes are unstable [2, 4], implicit schemes are usually used,

especially the Crank-Nicolson scheme. In [7], D.F. Griffiths et al discussed a predictor-corrector

scheme. In [8, 12] the existence and convergence of solution for this difference equation have been

--.. studied. Since the solution of Schr~dinger equation possesses conservation laws, the schemes which

* satisfy discrete conservation laws have also been investigated extensively [6, 7].

We consider the equation

uI (A(x, t)u,)_ + B(x, t)u. + C(x, t)u + f(x, t), (1.1)

in the domain QT(0 <5 X _< 1, 0 :5 t < T), where u(x,t), A(x,t), B(x,t), C(x,t) and f(x,t)

are complex functions, and ReA(x,t) _ 0 and IA(x,t) 1 0. This kind of equation arises in

plasma physics and acoustics 11, 11]. Clearly, (1.1) involves both equations of Schradinger type and

*-. parabolic equations. In this paper, we consider the initial-boundary value problem for (1.1), with

*-- the conditions:

= ia(x) (1.2)

- ' U l , = o  = U l , = , 0 1 ( 1 .3 )

where i(x) is a complex function.

In Section 2, we analyse the stability of a general two level difference scheme for (1.1), (1.2)

and (1.3), which is a direct generalization of a well-known scheme for parabolic equations, and

includes the explicit Euler scheme and the implicit Crank-Nicolson scheme as special members.

Some new results are obtained from which we can see the relationship between the Schr5dinger

equation and the parabolic equation.

If Re A(z, t) U , the above mentioned explicit Euler scheme is unstable. Several interesting

stable explicit schemes have been presented in [3] for the case of the simplified equation ut = iu..,

and applied to some underwater acoustics problem in [2]. In these schemes, Euler's method is

stabilized by appropriately chosen artificial dissipation. In Section 4, we extend these results to

equation (1.1).

We let h denote the spatial mesh size and divide the finite interval [0, 1] into the mesh intervals

by the points x, - jh (j = 0, .,J), where Jh 1 I. We let k. denote the size of the time
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step at the n-th step. For convenience, we shall denote u(z,, 4n) by u. We also use the following

difference operators

U1+1 - it

-=Ut.U = -- Uj

D*j= + - Uj _ tj - Ijl;..
h D.u = h

D u"j'= j+1/2 - uj- 1/2 - Uj+1 - Iti-1' Du.i = Du2 = (D+ + D-),i.
h Du- 2h

Hence, we have

- 2ui + uj- 1) = D+Du i = U.

h-- [A,+ 1/2 (ui+l - U,) - A,- 1/ 2 (u, - up-.)] = D(ADu).

* .. Finally, for any function 0, we use 0n+* to denote aon+ l + (1 - a)On , for 0 :< a < 1.

Next, we give our definition of stability. First we define the inner product for u and v:

(u, v) = uj-Dh
j=1

where V denotes the complex conjugate of v and the norm for u:

IIuII = U se

Definition 1.1. We call a scheme stable if the solution usatisfies

.L: J-1

Ilul -5 CIIlu 011 + c2 x IIf'JkI
two

where C, and C2 are constants which are independent of n and h.

2. A General Two Level Scheme.

- . We are going to consider the following scheme for (1.1), (1.2) and (1.3)

IL.+' - up?
J J...,...n+..,"-- UJ l- Irn+Cr (11n+a .i+* An+- (u "+a -u+\

kn h 2 -'j+l/2J+1 - j-1/2 ( - 1  (.

/ n+a n+a (2.1)
n--,-- -cn "+a ji1,2,...,J-1

"-.'" uj = u', j=1,2,..3,-1. (2.2)

uO =U o, n 0, 1,... (2.3)
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We can also write (2.1) in this form

n+n-+a n+f Cn+a0. +0= fn+O (2.4)u" i, -DA +
.

u " -  j D -i .j • (.4

Clearly, (2.1) or (2.4) is explicit, implicit and the Crank-Nicolson scheme when a -0, a # 0 and

= , respectively.

We will see that this scheme is unstable if Re A(x, t) = 0 and a = 0. In this case, we will give

another conditionally stable explicit scheme in Section 3.

To facilitate the analysis, we first transform (2.1) by a change of variable to eliminate the first

order term.

Lemma 2.1. Suppose A E C 3 , B E C 2 , C E C1 and ReA >0, AI > ao > , then we can choose

a function 0, such that 0 < k'o < Oj < All, j= 0, 1,... ,J where Mo and M, are constants

and under the transformation

--+ &= "+ -n+a (2.5)

(2.1) becomes:

L(V M 1 r(V P

L(V+) = / I j+1--1/2 - (2.6)
Gn+a -n+a n n+a -K+a+a -+1- -

~ v7~ H7+Gvn~a j+1 )+I ~ v

where Gj, Hi, K,, Qj, Fj are bounded in QT.

Proof. See Appendix A.

We now state our main stability result for (2.6).

Theorem 2.1. Suppose the conditions in Lemma 2.1 are satisfied. If < a S 1, then scheme (2.1)

is stable.

Proof. In order to establish the stability of (2.6), we are going to estimate I1vn+ 11l. We multiply

(2.6) by V7+* to obtain:

-(L(v"+,), v+a) (F V (2.7)
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Then we estimate every term in (2.7). For the first term, we have:

Re (v+l, v"+a) = cRe (v"+' , V"+) + ( - )Re (v"+' , v")

-- Re Z'V rn+ + Re ZV;~f (2.8)

- (: IV;+ 12 - j: I7 ;I) 2  E j - v122k,, 2kn ~ 1  v 1

1 2_.(Ilvn±1ll2 _ ilvnll2) (1-2a)- n ,1 jnj)- 2 knJlb n+1112.

For the second term, we have

Re (DA "+ Dv , v"+') = -Re (A"+ * D_ v "+*, D- vf+a)
(2.9)

= -IIVJReAn+-D-vn+a 112.

For the rest of the terms on the left hand side of (2.7), we have

tGfaV;, +a 1 :5 (I VAnf1& 2 + IV~ 2

H+v+ + j n+a n+ 12
j,,+"vn+,m"n+" I -  12 (Ivn+ o12 + I I,+ 12)
~i+. In+& n . + I I +al =nIejq][ll2\ +( r~~j

IK v7 < 2K7+ (IVn+112 + I1TCQn+aj

2

So we have

ina n a n+ I  n + +i +[ nqj~n+aV"a+ Qla2i-

Re [E Gz7:u 0 + E H7 0  +

5<M 2 [,Ivn+aj2 + IVn~al + Ivn+a 12 + 12.10)
I 2 M 2  2.

SM 2 IIv + 112 + ll v""1n+"1112 + VI2 +3MV22 . i2 ,

where M2 is a constant which is an upper bound of IGI, IHI, IKI and IQI.
For the right hand side of (2.7), we get

IRe (Fn+", vn+a)I < + IIr"+I2 .(2.11)

- 2 2
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Now we substitute expressions (2.8), (2.9), (2.10) and (2.11) into (2.7) and obtain

1 (IVn+1II1 - I1V"112) --(1 kl "+1i I2 + 11 VIReA-+-D- "+& 2

53MU21 "V+&112 + -In+1 112 + -IIvn1l2 + lljvn+ l2 + 1IIFn+.II2

<_ M3(IIV"+l112 + IIV1l2) + -IIF" 1+I 2,
(2.12)

where
-Al2M3 = 042 + -- +1
2 Acccwio Fo-r

When < a _ 1, from expression (2.12) we have NTiS '">Th\LdC I A'i- -i

1 U 1.L(',,CJ
( +1112 - IVII 2) < .M3(IIv+ 112 + IlVnll2) + l11i+eIl 2 j .

It is easy to see that when kn < we have 1 3y ....... ........................-~r D;.IA~~o

1+ 22k.AFn12 Av.>,4,-,Ity Codes
Ilv"+'l 1  --_ -2k1 fM3f"  + 2k'F 2 or

_ (1 + 8kM 3 )Iv11I 2 + 2knIF1I 2. Di t

According to Lemma 4.1 in Appendix B, we obtain A-1

I1v+ 1 112 5 2e 8Af a+' [IIo112 + FllpII2k, . (2.13)

From (2.5) and 0 < Mo _ I1i -< M we obtain

n+ 11 I1 A3" 1 IIO1 ~1IIHun+ 2 _ ~ e [IuI ~ Iki] (2.14)

Now we turn to discuss the case 0 < r <.

Theorem 2.2. If 0 < a < and

1L(2.15)

: wh ere , /is an arbitrary positive constant then th e scheme (2.1) is stable.

I:.

S. -
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Proof. First let

P2 j = hAi, 2 1 V ?+I
= II- I• " 2 'Aj-1/2,j - -

Pi = Il&I lv;+I
.n+ol In+al

2::. " ~Psi = Ij+ H j l

:"p': P = IOf2+ l lI "+l-

Pj = IF7+I.

From (2.6) we obtain immediately

+i12 (7)(2.16)

Next we construct a quadratic form in Pj, (I = 1,..., 7) by

-... h2 ReA p,2 h2 ReAjj+1/ 7 2 (2.17)p

pi = + 12 p i n--a 12 P2 +57 , ' , - (1 - 2ce)kn ji (2.17)
"A,+1/2, I- 11 2 =

v€ where 17 is an arbitrary positive constant. According to Lemma 4.2 (in Appendix C), P is nonneg-

- -:ative if
,::'...kn 1_ Am- & f2 l.t] 2 121(1 - 2ac) r, + , -_,.(

which is true because of (2.15). Making this assumption, we have from (2.16)

+,,1 7 A+5,( hRe'2 Ih 2Re A" /2
(1 2~k~ 1~'2 <J 11 " j+ 1 ~ i1 2Pj+ p2'j

1A$Z, 2
2 / \ j-1/2I

Summing up these expressions from j = 1 to j = J - 1, we obtain

:(2 - 2a)kn11+1 112 < 211 /ReA"3+aD-)"+dII 2 + 5wM +(II "+ I2 + IVn+1-112) + 5 IFn+I12.

< 21I ReAn+D_vn+G112 + 407M2(lIv" + II2 + IIV 112) + 511,+IFn11 (2.19)

Substituting (2.19) into (2.12), we have

(110+1 12 - I~vn112) < &14(1lv+ 112 + II,11 12) + Ms1IF"+II2 ,

.. . ................. --
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where M 4 = 2M3 + 40v-M2 and A = 1 + 5q. It is easy to see that when k, , Y.-, then

1 + kAM4  -1 M 4k, IIFN+o
< (1 + 4k..A4 )ll,,"I 2 + 2Mk.IlFn+II2

According to Lemma 4.1, we obtain
n

llVn+ 1 112 < e4M4 '"+' (lU°11 2 + 2M5 F llF l12 k) (2.20)
i=0

and from (2.5) and 0 < Mo 0  1 < Al, we obtain

n+~~1 112 < e4Aft"+
1 (11u 0112 + IIFS+a112Hu + .- ' l, 2M.5 k l j+l2) (2.21)

0 L=0

which implies that the scheme (2.1) is stable.
tI

3. A stable explicit scheme for the case Re A 0.

In this section, we assume Re A 0 and let a(x, t) denote the imaginary part of A. We see

from the previous section that the scheme (2.1) with a = 0 is unstable. This is unfortunate because

in many applications an explicit scheme is desirable because they tend to be easier to implement,

especially in a vector or parallel computing environment. In 12], we construct a stable explicit

scheme for the simple equation ul = iu.. by adding appropriately chosen artificial dissipative

terms to (2.1). Here we consider an extension of this scheme for the more general equalion (1.1).

We construct the following scheme

uf! iU,+ -- 2 u? + u" (iai - ji l)
_+ - + j - -tj ~ V" + V -I, - h2  4 (7 2(3.1)

- 2h C =f j=1,...,J-1,

where
In n 1,(32

whreBn ( U'-(u - u _ (3.2)

with

VO -j =0. (3.3)

We will prove that this scheme is conditionally stable. For convenience, we assume

1.
a,>0, j=0,1,...,J. (3.4)

:...... .:......... . ...-.- .. . . -... .. ..- ..-....... ........ .:. . . . .. ...... .- . .-.
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2.

m ax (j , , ' a B I, , C)l < M . (3 5)
*x. -

*. We shall need the following lemmas:

Lemma 3.1. (Discrete Sobolev inequality)

-Given c > 0, there exists a constant c dependent on c and n such that

"" ID'UIIL EIID"UIIL2 + CIlIIL2 1 <n, (3.6)

IID'uIIL, < ejlDnUIIL2 + CILIL2 1 < n. (3.7)

Lemma 3.2. (Estimate I unj).
For any c > 0 there exists a constant K dependent on c, such that the solution u of (3.1)

satisfies :
J-1

(a+?2 I D') + ID + K(e) [IunI2 + + IIfll 2]. (3.8)
j=1

Proof. From (3.1), we have

11 4-+1112 ia=D { Ui + i 1)aD 2v7 + G] iaD24 + (I -)aD
2  + 0 }

j=1

where

Gj = BiDuj + cyu, + fi. (3.9)

-_'. Expanding the above expression, we have
n J- ! I

14+1112 1= Z'-{(ya) 2 D U"$ + 2 Re [(1 i)(a 2)h 2 Du7 D'v7] +D (a 2 h4ID 2v7 2 }
j=1

J-1
+ 2Re E[iaiD + -(- 1). a 2 D .

j=1

Using (3.3), we obtain

J- 1

vin v [(an+ )2(tn+, ,n) 2 (,)( n )2 (a)2)( - )
-- (a?) Vjy ;-) ((- n

j=1

J-1 J-1 J-1

;= ( ;,o;( Eq- )- v(a)2(4 - .._,) - v-((ao+) 2 (an)2)(,,+ _ n)

- (a 2 1v t -i v7 - ((a i)
2  - ")2)4t (,+ -, )

j=l j=1

% . . .'
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Hence

2 Re ((1 - i)(a)hD 2u . D2v?] + - J(a)) h D2 vI

< ~Z~a)2t,((an++I (afl2vf(f - )
2 1 J- j=1

Y JJ-

+ (a ?) 2 [1 Vn - v712 + IV,) - V 12 ]

j=1

<-(a)),(7+ 7f - a )) - a71;:+ v - v~I
Sj=l j=l

J-1

.- V~f+ 12 Vn n,

,-..2 +ja i) -(a)2 [I1..+ -7 1 + Iv. - v ''j. 2

j=1 n- 1) 1 , n ,

j=l='

Fo G, sig ema J1 we-av

* ,l 112  3A2(I2U"1I2 +) 211~ V;2 + j+I V

(< ID2 la 2+,) - (a"2 (v I + - ) l+1"

Qa? 2URe + [1(i~u + I~(i- 2)aD2 7]

1j=

Fo * sngLma31 we have

A• 11 +- JI"1)+31n

3M -E 2I <- (IaD +n

[3fc 18?f2,1 I I(D2U-11 + 16 2Kl + M 3I IlUn I2 + 1If I l'

+ +2 2 2 Vnwe piD - +ostiv c )awe Ddeine

84f

.~.A . .<. . * . * * -= :

Foe Ghasve Lm3.,wehv

:5 3M il <21 32U"11 I2 + J I~n "I +112/l

<__2 + ', ID2U"II12 + (6- 't(l + ) I jU I 12 +3lf l ,

where E2 is any oit ivell o nstat .f we define -,b

J-1
CaDui+i, )~ i y

W864have
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and E2 by
E

2 12M

then we have

Q < IID21,,11 + i,,(E) [11u,112 + Ilfn112]

where K,(c) is a constant dependent on e. On the other hand using Lemma 3.1,

J- 1
2 Z I( +i) (a ) 11 v I v,,+ 1 -I 8 M2hllv/Il2Lj=

< 8M 2h [311.D 2U,112 + K2(f3)JIU"11 2]

= 8M 2hE3jjDu "jJ2 + 8M 2hK 2(f3)IIujj 2

where E3 is an arbitrary positive constant. If we take

£ 16M 2 h

then we have

J-1

j+ j j1 2J,

where K3 (c) is a constant dependent on c. Combining the above results, we finally have

J-1

iiu+Ill2 < '(a ')2ID 2uI 2 +1 2 + K4(f)IJu"112 + K,(E)Ilf"112,

where

IC4(£) = K1 (c) + K3 (c)

which completes the proof.

Theorem 3.1. If (3.4) holds and

min la(x)I > 8 > 0 (3.10)

then the scheme of (3.1) is stable if
1 h 2

k, < 1 mh (3.11)
2" mrax jal

Proof. Multiply (3.1) by W? and we obtain

(Lu". u") - (f n, un). (3.12)
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Next we estimate each term in (3.12). For the first term we have

Re(u"+',u") = 1 (II) n+ 1 _j In[llt
-. ( n 11

which is similar to (2.8). Applying Lemma 3.2, we obtain, for any c > 0,

Re (4+1, un) 1 (Ijun+1I12 110112) - E [(a)21D2Uy2 + " IID2Un" 2 + kIUj"I2 + killfn2]

(3.13)

The second term is given by

12 = ( iaU + h -U- 
"

We first employ the following expansion

u - 20! + u1 1 [n(n - u )- a.(u - u_)]
a? + j2  J-I [aj1/2(Uj+1 0) -?1/2U U7-01

+ T21 [(a, - a,+1/2) (u.1 - u,) -(a- an u2)(un - uy"-I)3

Then, using the boundary conditions, we have:

J-1

J 1 J-2
= j" +vat, - Uflf - a7 +.,2(U"+, - "+

j1 -- O

T= - ja;+1 2lu'+i J ~
J=O

and

J1iE - a+1/2)(ty+ - ut) - (a? - a!-.12)(u, - ..- i)] 71
+1/2)l (U j"+  ;1 I ' -  a 1°/) '. U! 1) ,- h1 - )

j=1

h 2 jh j=1 h

(a'(? a!1- j-1/2 121 !2+ 1 h I° °' 111

2[eIID 2u"112 + C2IUnl1 2] + M2IIUnII2

__ 2flID 2U"112 + (2C2 + Nf2)IlU I2.

:i:.: :-. > _,. ::" , : 2- :- 2,-,?: :i ::":. :'>' : - . .: :; . . _. . : -.: ::::-i ::;..:--i:::: .:; ::



Page 12

Hence we have

IRe 121:5 2clID2U"1I2 + (2C2 + M2)Il~uI 2.

The third term is given by

(ia;'- laj1)(l 2 +v.i)t)

Using the expression :

4 T2

(1)1[(an - a +I)V,+i + (aj - aJ)vj~]

we have

h( -4 T2- l a'+lvj+i 2a'?v7 + a...iv..i] fi
j=l

4 aj

4 hh2i)

4 j=1

and

~ j~ [(a' an-v~ + (01a, _I)v7..] Ul

J- n j=1 aj=-1l

1: -

-~< Alh[,EIIVnII 2 + IlI 12]

-hCMiv" 11+ 711u112

The rest of the terms are easily bounded

j-1

<2 [eIID 2Un112 + K2 (C) 1l 12]

I(CU,U)I :5 MIjUI12

and

I~f 5. 5 Ill 11 + .JU1

2 2.
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Summing all the above terms, we get

1 (IIUn+1i2 _ IjuII2)
"'" J-2U 11

(a! 2 _ han) ID2 U 2 + + 2e + heM + ID +uIIfl .

-jj
[Lh K4 + 2C2D +M + [LII

Of course, when (3.11) holds, we have

k,,,, 2 _h
2 n < 0 2 L

4 ' 2

where
h 2

2 max jal /n >0.

As long as c is small enough, we can make

k, :Me < P2A
S+ 2c + kcM +- - .

For such an c, we have

-(JJJn+1112 -_-jJun2) _< JIjul-J2 +. A411f- 2.

Here the constants M, M 2 depend on A and Af. Using Lemma 2.1, we have the proof.

4. Concluding Remarks

Using energy methods, we have established the stability properties of the two schemes consid-

ered in this paper. Since equation (1.1) includes both parabolic and Schr~dinger type equations as

special cases, our stability results provide a unified treatment for both types of equations. Finally,

the results here agree with the stability results obtained for the constant coefficient Cauchy problem

via Fourier analysis [3, 4].
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Appendix

Appendix A (Proof of Lemma 2.1)

We substitute (2.5) into (2.1) and get, for the first term

1 0- -V~ - v7n) + (Of+i o +&)vf+l + (Oj+* o)v']

1 [on+- (V-+l - v7,) + (q91+, 1Ol) ((, + ) Vf+i+vj)]

Oi!,+avra+1 + n+1-aon+1

In the following, for simplicity, we shall drop the index "n + a". For the second term using

the expressions

Oji= O, + bvjh + D+D-Oih'

Oj-1 0= - D4,h + -D+D-O.qjh,

we obtain:

D(ADu,) =D(AD(Ov)j)

T2Oj [A,+1 / 2 (V,+l -Vj) - A,...i 2 (V, - V-)

+I- [A,+ 1 2 (0i+l - 4',...)vil - A,.. 1 / 2 (0sj+i -1)j1

+(Oj+1 - 20j + O4-i
+ 2h2  1(A,+ 1/ 2v,+l + -12j)

Oj [Ai+1/2(V,+i - VA) - A,.. 1/ 2 (v, - Vj- 1.i) + (4'+i- l~)A(tV,+ 1 -1

h2 h2h

+ 1 2h (A+1 2 ,- +, 11 v) 1

= 4DADvi + 2AjDbojDvj + EA,+1 /2 - A, j+ + A, A,.. 1 /2 vj.. 1 bojh hj

+(Ai+i1/2v,+ + A,-1/2Vi-1) D 2o
+ 2

For third term using the expressions

Oj1= tk, + D+jh Oj-1 =j - D-Okjh

we obtain

=B,4iDvi + TL(D+Ojv~l + D-4Ov, 1 )
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In the second and third term, the first order difference term for v is (2AjD¢ + Bi Pa)e. we

can choose Oj to make this term vanish by setting

2A, D4' + Bj O 0. 1

Since IAI _ ao > 0 and A, B are bounded, it is easy to see that we can choose Oi such that

0 < Mo _< !5I < M 1 , where Mo, .M1 are constants. Moreover, from (1) and 14'il < M 1 , we have

I1D4i < constant in QT.

If we take the finite difference of (1), then because of the assumptions on A ,B, we can obtain

[D+D-Ojl <constant in QT.

After some manipulation, we obtain (2.6), where

+(A,~ 7' 2  b1+na
J- nOh 2 +2

H n+& "+&n~
j Cj

(A +O - An+a) 1b + •
n+ I b +a j+1/2 j + .. n+an+a j n+aKlj+l + - " h + 2 "+ '-O'& "j+1/2 + ]-'-.

,n+&
flf+°= .. +o._

f.l+a

Because of the properties of A, B, C, F and 4, the functions G, H, K, Q and F are all bounded.

Appendix B

Lemma 4.1. (Duhamel's Principle).

Assumeu n > 0, v" > 0 for n = 1,2 ,.
i f un+ 1 < (1 + Mkn )Un + knVn, n =O, 1 ..,

then
n+l < eM1r+ 0 + A, (2)

1=0

Here M is a positive constant and tn+l E n k,.

Proof.

9 . ,.., ,,.. .; , . > ,;,.,.. - .,. :€ :, .¢: , ,, , : .. .: ..: -, . ,.. - ,,., .. . . ..,,. -. ,,, .. . . .. . . ..
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We have
u"+ "(1 + Mk.)u" + k~v"

<(1 + Mk,)[(1 + Mkn-I)un -1 + k,-ivn - 1I + knvn
n n-1

t< ( + n,) 1 (1+Mk.)kv'+k.vn

1=0 1=0 8=1+1
n n-1 n

:< 11(1 + Mk4) + E rj7(I + Mk.)ktv' + knv"

1=0 1-0.-0

< exp In(I + Mkj) u + vkt

Since In(1 + Mk,) <- Mk,, we obtain (2). ,U

Appendix C

Lemma 4.2. Assume m i _ 0 (i = 1,..., n) and k > 0. The necessary and sufficient condition for

the polynomial in pi
nt 

n

E mip?2 - k(Ep,)2  (3)
isl i-i

to be nonnegative definite, is

1 __. ~ l i( 4 )

Proof. Define p = (pl," j,p-)T 1 (1 1 ,..., 1 )T and D = diagona(mI,m 2,...,mO. Then the

polynomial in (3) can be rewritten as

pT Dp - k(prl)2 
- pT(D - kllT)p

The condition for the matrix D - klT to be nonnegative definite is 1 - klTD-1l > 0 which is (4).

I

n , , -.%. ,: ; L .. . , _ , . , - ... . . - : , . " " ' = : ,. . " , " ' " " " - " ' ' ' '

. . ..Nw mU d m dn kl li l lil~ m l l h d I
'

..
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